Response of leaf water potential, stomatal resistance, and leaf rolling to water stress.
نویسندگان
چکیده
Numerous studies have associated increased stomatal resistance with response to water deficit in cereals. However, consideration of change in leaf form seems to have been neglected. The response of adaxial and abaxial stomatal resistance and leaf rolling in rice to decreasing leaf water potential was investigated. Two rice cultivars were subjected to control and water stress treatments in a deep (1-meter) aerobic soil. Concurrent measurements of leaf water potential, stomatal resistance, and degree of leaf rolling were made through a 29-day period after cessation of irrigation. Kinandang Patong, an upland adapted cultivar, maintained higher dawn and midday leaf water potential than IR28, a hybrid selected in irrigated conditions. This was not explained by differences in leaf diffusive resistance or leaf rolling, and is assumed to result from a difference in root system extent.Stomatal resistance increased more on the abaxial than the adaxial leaf surface in both cultivars. This was associated with a change in leaf form or rolling inward of the upper leaf surface. Both responses, increased stomatal resistance and leaf rolling, were initiated in a similar leaf water potential range (-8 to -12 bars). Leaves of IR28 became fully rolled at leaf water potential of about -22 bars; however, total leaf diffusive resistance was only about 4 to 5 seconds per centimeter (conductance 0.25 to 0.2 centimeter per second) at that stage. Leaf diffusive resistance and degree of leaf rolling were linearly related to leaf water potential. Thus, leaf rolling in rice may be used as an estimate of the other two less obvious effects of water deficit.
منابع مشابه
Effects of Water Deficit Stress and Two Mycorrhiza Species on Some Physiological Attributes and Tuber Fresh Weight of Potato cv. Agria Under Field Condition
In order to evaluate the tuber fresh weight and some physiological attributes of Agria potato cultivar in response to water deficit stress and mycorrhiza inoculation, a field trial was conducted as a split plot scheme based on randomized complete block design with three replications at the research site of Islamic Azad University, Tabriz Branch in 2012. Four water levels including: irrigation a...
متن کاملLeaf water potential, stomatal resistance, and photosynthetic response to water stress in peach seedlings.
Individual groups of peach (Prunus persica [L.] Batsch) seedlings stressed to -17, -26 and -36 bars recovered to control levels within 1, 3, and 4 days, respectively. Stomatal resistance was significantly correlated with both leaf water potential and net photosynthesis. In seedlings stressed to -52 bars, leaf water potential and stomatal resistance recovered sooner than net photosynthesis, desp...
متن کاملبررسی اثر ضدتعرقی کائولین بر برخی ویژگیهای فیزیولوژیک چهار رقم زیتون
To reduce transpiration and increase water use efficiency of olive trees in Ahvaz, the antitranspirant effects of of three levels of kaolin (0, 2.5% and 5%) on four varieties of olive (Mission, Conservolea, Keylet, Bledy) was carried out in a four-month period, with three replications. The results showed that Kaolin have a significant effect on plant water potential, leaf relative water content...
متن کاملUnraveling the effects of plant hydraulics on stomatal closure during water stress in walnut.
The objectives of the study were to identify the relevant hydraulic parameters associated with stomatal regulation during water stress and to test the hypothesis of a stomatal control of xylem embolism in walnut (Juglans regia x nigra) trees. The hydraulic characteristics of the sap pathway were experimentally altered with different methods to alter plant transpiration (Eplant) and stomatal con...
متن کاملStomatal diffusion resistance of snap beans. I. Influence of leaf-water potential.
Concurrent measurements of abaxial and adaxial stomatal resistance and leaf-water potentials of snap beans (Phaseolus vulgaris L.) in the field and growth chamber show that the stomata on the 2 surfaces of the leaflet react differently to water deficit. The stomata on the abaxial surface, which are about 7 times more numerous than on the adaxial surface, are not significantly affected at leaf-w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 65 3 شماره
صفحات -
تاریخ انتشار 1980